Totally geodesic foliations, Riemannian flows and Seifert manifolds.
From MaRDI portal
Publication:2485451
DOI10.5802/aif.2128zbMath1080.53024OpenAlexW1633632458MaRDI QIDQ2485451
Publication date: 4 August 2005
Published in: Annales de l'Institut Fourier (Search for Journal in Brave)
Full work available at URL: http://www.numdam.org/item?id=AIF_2005__55_4_1411_0
Global differential geometry of Lorentz manifolds, manifolds with indefinite metrics (53C50) Foliations (differential geometric aspects) (53C12) Foliations in differential topology; geometric theory (57R30)
Related Items (2)
A note on geodesic foliations on the torus ⋮ Collapsing, spectrum, and Diophantine properties of Riemannian flows
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- The fundamental group of a compact flat Lorentz space form is virtually polycyclic
- Transverse foliations of Seifert bundles and self homeomorphism of the circle
- Riemannian foliations. With appendices by G. Cairns, Y. Carrière, E. Ghys, E. Salem, V. Sergiescu
- Rélations de conjugaison et de cobordisme entre certains feuilletages
- Feuilletages des variétés de dimension 3 qui sont des fibres en cercles
- Geodesic foliations in Lorentz 3-manifolds
- Differentiable rigidity of Fuchsian groups
- Dynamical properties of the space of Lorentzian metrics
- Examples of Lorentzian geodesible foliations of closed three-manifolds having Heegaard splittings of genus one
- Completeness of Lorentz manifolds with constant curvature
- Isometry groups and geodesic foliations of Lorentz manifolds. II: Geometry of analytic Lorentz manifolds with large isometry groups
- A Hochschild homology Euler characteristic for circle actions
- A note on actions of the cylinder \(S^1\times \mathbb R\)
- Variétés anti-de Sitter de dimension 3 exotiques. (Exotic 3-dimension anti-de Sitter manifolds)
- Reeb foliations
- Bundles with totally disconnected structure group
- Complétude et flots nul-géodésibles en géométrie lorentzienne
This page was built for publication: Totally geodesic foliations, Riemannian flows and Seifert manifolds.