A posteriori error estimation of goal-oriented quantities for elliptic type BVPs
DOI10.1016/j.cam.2005.06.038zbMath1089.65120OpenAlexW1999674338MaRDI QIDQ2488885
Publication date: 16 May 2006
Published in: Journal of Computational and Applied Mathematics (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.cam.2005.06.038
numerical exampleserror controlFinite element methodA posteriori error estimationelliptic boundary-value problemsSuperconvergenceGoal-oriented quantity
Boundary value problems for second-order elliptic equations (35J25) Boundary value problems for higher-order elliptic equations (35J40) Error bounds for boundary value problems involving PDEs (65N15) Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs (65N30)
Related Items
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Adaptive finite element methods in computational mechanics
- Superconvergence phenomenon in the finite element method arising from averaging gradients
- Elliptic boundary value problems on corner domains. Smoothness and asymptotics of solutions
- A posteriori error analysis for elliptic PDEs on domains with complicated structures
- A posteriori error analysis for stabilised finite element approximations of transport problems
- Superconvergence in Galerkin finite element methods
- A simple error estimator and adaptive procedure for practical engineerng analysis
- On a superconvergent finite element scheme for elliptic systems. I. Dirichlet boundary condition
- The superconvergent patch recovery anda posteriori error estimates. Part 1: The recovery technique
- The superconvergent patch recovery anda posteriori error estimates. Part 2: Error estimates and adaptivity
- A‐posteriori error estimates for the finite element method
- Error Estimates for Adaptive Finite Element Computations
- A comparison of a posteriori error estimators for mixed finite element discretizations by Raviart-Thomas elements
- Some remarks on the history and future of averaging techniques in a posteriori finite element error analysis
- Gradient superconvergence on uniform simplicial partitions of polytopes
- A posteriori error estimation for variational problems with uniformly convex functionals
- The generalized finite element method
- Goal-oriented error estimation and adaptivity for the finite element method