Gromov-Witten invariants of symplectic quotients and adiabatic limits

From MaRDI portal
Publication:2491052

DOI10.4310/JSG.2005.v3.n1.a3zbMath1143.53080OpenAlexW2023693336MaRDI QIDQ2491052

Dietmar A. Salamon, Ana Rita Pires Gaio

Publication date: 19 May 2006

Published in: The Journal of Symplectic Geometry (Search for Journal in Brave)

Full work available at URL: https://projecteuclid.org/euclid.jsg/1144947823




Related Items

Hamiltonian Gromov-Witten invariants on \(\mathbb{C}^{n+1}\) with \(S^1\)-actionAnalysis of gauged Witten equationProperness for scaled gauged mapsCompactness in the adiabatic limit of disk vorticesThe moduli space of twisted holomorphic maps with Lagrangian boundary condition: compactnessExponential decay for sc-gradient flow linesA compactness theorem for \(SO(3)\) anti-self-dual equation with translation symmetryGauged Gromov-Witten theory for small spheresA new equivariant cohomology ringQuantum Kirwan morphism and Gromov-Witten invariants of quotients. IIIA wall-crossing formula for Gromov-Witten invariants under variation of git quotientGluing affine vorticesPerturbed geodesics on the moduli space of flat connections and Yang-Mills theoryOn the \(L^{2}\)-metric of vortex moduli spacesGradient flow line near birth–death critical pointsLocal model for moduli space of affine vorticesUnnamed ItemThe three-dimensional Fueter equation and divergence-free framesResidue Mirror Symmetry for GrassmanniansMorse theory for Lagrange multipliers and adiabatic limitsDynamics of abelian vortices without common zeros in the adiabatic limitQuilted Floer cohomologyWall crossing for symplectic vortices and quantum cohomologyGauged Hamiltonian Floer homology I: Definition of the Floer homology groupsGauged Floer theory of toric moment fibersClassification of U(1)-vortices with target ℂNClassification of affine vorticesAdiabatic limits and Kazdan-Warner equationsA Quantum Kirwan Map, I: Fredholm TheoryThe Gromov limit for vortex moduli spacesQuantum Kirwan morphism and Gromov-Witten invariants of quotients. I