The Lascoux, Leclerc and Thibon algorithm and Soergel's tilting algorithm.
DOI10.1007/S10801-006-6026-5zbMath1100.20009arXiv0905.0432OpenAlexW1974931377MaRDI QIDQ2492811
Publication date: 14 June 2006
Published in: Journal of Algebraic Combinatorics (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/0905.0432
Hecke algebrasKazhdan-Lusztig polynomialsdecomposition numberscrystal basesFock modulesLascoux-Leclerc-Thibon algorithmSoergel tilting algorithm
Combinatorial aspects of representation theory (05E10) Quantum groups (quantized enveloping algebras) and related deformations (17B37) Hecke algebras and their representations (20C08) Representations of finite symmetric groups (20C30)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Tensor products of quantized tilting modules
- On Schur algebras and related algebras. IV: The blocks of the Schur algebras
- On the decomposition numbers of the Hecke algebra of \(G(m,1,n)\)
- Hecke algebras at roots of unity and crystal bases of quantum affine algebras
- On the decomposition matrices of the quantized Schur algebra
- Kazhdan-Lusztig-Polynome und eine Kombinatorik für Kipp-Moduln
- The Decomposition Matrices of GL n (q ) for n ⩽ 10
- A path algorithm for affine Kazhdan-Lusztig polynomials
This page was built for publication: The Lascoux, Leclerc and Thibon algorithm and Soergel's tilting algorithm.