Operator gauge symmetry in QED

From MaRDI portal
Publication:2495160

DOI10.3842/SIGMA.2006.013zbMATH Open1093.81063arXivquant-ph/0602002OpenAlexW2136430814MaRDI QIDQ2495160

Siamak Khademi, Sadollah Nasiri

Publication date: 4 July 2006

Published in: SIGMA. Symmetry, Integrability and Geometry: Methods and Applications (Search for Journal in Brave)

Abstract: In this paper, operator gauge transformation, first introduced by Kobe, is applied to Maxwell's equations and continuity equation in QED. The gauge invariance is satisfied after quantization of electromagnetic fields. Inherent nonlinearity in Maxwell's equations is obtained as a direct result due to the nonlinearity of the operator gauge transformations. The operator gauge invariant Maxwell's equations and corresponding charge conservation are obtained by defining the generalized derivatives of the first and second kinds. Conservation laws for the real and virtual charges are obtained too. The additional terms in the field strength tensor are interpreted as electric and magnetic polarization of the vacuum.


Full work available at URL: https://arxiv.org/abs/quant-ph/0602002

File on IPFS (Hint: this is only the Hash - if you get a timeout, this file is not available on our server.)






Related Items (1)






This page was built for publication: Operator gauge symmetry in QED

Report a bug (only for logged in users!)Click here to report a bug for this page (MaRDI item Q2495160)