Some complete monotonicity properties for the \((p, q)\)-gamma function
From MaRDI portal
Publication:2513912
DOI10.1016/j.amc.2013.04.034zbMath1304.33008OpenAlexW2206317564MaRDI QIDQ2513912
Valmir Krasniqi, Sever Silvestru Dragomir, Hari M. Srivastava
Publication date: 29 January 2015
Published in: Applied Mathematics and Computation (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.amc.2013.04.034
Laplace transformsBorel measurecompletely monotonic functionsYoung's inequalitylog-convex functions\((p,q)\)-gamma functionlogarithmically completely monotonic functions\((p,q)\)-psi function
Related Items
Complete characterizations of the gamma function ⋮ Corrigendum to: ``Some complete monotonicity properties for the \((p, q)\)-gamma function ⋮ Some conditions for a class of functions to be completely monotonic ⋮ Some extensions of the Prabhu-Srivastava theorem involving the (p,q)-gamma function
Uses Software
Cites Work
- \(q\)-Bernoulli numbers and polynomials associated with multiple \(q\)-zeta functions and basic \(L\)-series
- On a \(q\)-analogue of the \(p\)-adic log gamma functions and related integrals
- Summations for basic hypergeometric series involving a \(q\)-analogue of the digamma function
- A complete monotonicity property of the gamma function
- Logarithmically completely monotonic functions relating to the gamma function
- Integral Representations for the Euler-Mascheroni Constant γ
- Theq-Gamma andq-Beta Functions†
- Inequalities and monotonicity properties for gamma and q-gamma functions
- Some completely monotonic properties for the $(p,q )$-gamma function
- Three classes of logarithmically completely monotonic functions involving gamma and psi functions
- On some inequalities for the gamma and psi functions
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item