Dini Lipschitz functions for the Dunkl transform in the space \(\mathrm{L}^{2}(\mathbb{R}^{d},w_{k}(x)dx)\)
From MaRDI portal
Publication:2515999
DOI10.1007/s12215-015-0195-9zbMath1320.42007OpenAlexW1763694799WikidataQ59430131 ScholiaQ59430131MaRDI QIDQ2515999
Radouan Daher, Mohamed El Hamma
Publication date: 7 August 2015
Published in: Rendiconti del Circolo Matemàtico di Palermo. Serie II (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s12215-015-0195-9
Fourier and Fourier-Stieltjes transforms and other transforms of Fourier type (42B10) Harmonic analysis and PDEs (42B37)
Related Items (9)
Best trigonometric approximation and Dini-Lipschitz classes ⋮ Lipschitz conditions in Laguerre hypergroup ⋮ Titchmarsh's theorems, \(K\)-functional and Jackson's theorems for the free metaplectic transform ⋮ Lipschitz conditions in Damek-Ricci spaces ⋮ Lipschitz conditions for the generalized discrete Fourier transform associated with the Jacobi operator on \([0, \pi\)] ⋮ Discrete Fourier-Laplace transforms of Lipschitz functions in the spaces \(S^{(p,q)}(\sigma^{m-1})\) ⋮ Modulus of continuity and modulus of smoothness related to the deformed Hankel transform ⋮ On spherical analogues of the classical theorems of Titchmarsh ⋮ On the generalized Dunkl Dini–Lipschitz spaces
Cites Work
- Unnamed Item
- Unnamed Item
- Bessel transform of \((k, \gamma)\)-Bessel Lipschitz functions
- Fourier transforms of Dini-Lipschitz functions
- Markov processes related with Dunkl operators
- The Dunkl transform
- Approximation of functions by the Fourier-Bessel sums
- Convolution operator and maximal function for the Dunkl transform
- Some remarks concerning the Fourier transform in the space L 2 (ℝ)
- Differential-Difference Operators Associated to Reflection Groups
- Integral Kernels with Reflection Group Invariance
- Paley-Wiener Theorems for the Dunkl Transform and Dunkl Translation Operators
This page was built for publication: Dini Lipschitz functions for the Dunkl transform in the space \(\mathrm{L}^{2}(\mathbb{R}^{d},w_{k}(x)dx)\)