Du prolongement des espaces fibrés et des structures infinitésimales
From MaRDI portal
Publication:2527439
DOI10.5802/aif.255zbMath0157.28506OpenAlexW1977876202MaRDI QIDQ2527439
Publication date: 1967
Published in: Annales de l'Institut Fourier (Search for Journal in Brave)
Full work available at URL: http://www.numdam.org/item?id=AIF_1967__17_1_157_0
Related Items
On connections of geometric structures ⋮ Overdetermined systems of linear partial differential equations ⋮ Classification of principal bundles and Lie groupoids with prescribed gauge group bundle ⋮ Unnamed Item ⋮ Skew connections in vector bundles and their prolongations ⋮ On infinite Lie groups ⋮ Unnamed Item ⋮ Bott’s vanishing theorem for regular Lie algebroids ⋮ On some Operations with Connections ⋮ Natural bundles and operators ⋮ Unnamed Item ⋮ Unnamed Item ⋮ Unnamed Item ⋮ Unnamed Item ⋮ Troisième théorème fondamental de réalisation de Cartan ⋮ A contravariant theory of differential prolongation in models of spaces with connection ⋮ Second order connections and stochastic horizontal lifts ⋮ Structures on differentiable manifolds ⋮ Su alcune algebre caratteristiche nella teoria dei getti ⋮ From PDEs to Pfaffian fibrations ⋮ Generalized linear structures and the geometry of submanifolds ⋮ On nonlinear transformations in vector spaces. Colineation and conformal groups
Cites Work
- Sur la géométrie différentielle des \(G\)-structures
- Deformation of structures on manifolds defined by transitive, continuous pseudogroups. I: Infinitesimal deformations of structure. II: Deformations of structure
- Sur la géométrie des prolongements des espaces fibres vectoriels
- Structures locales
- A global formulation of the Lie theory of transformation groups
- The First and Second Fundamental Theorems of Lie for Lie Pseudo Groups
- An algebraic model of transitive differential geometry
- Cohomology Theory of Lie Groups and Lie Algebras
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item