Resolutions by hyperfunctions of sheaves of solutions of differential equations with constant coefficients
From MaRDI portal
Publication:2528301
DOI10.1007/BF02052957zbMath0161.29802MaRDI QIDQ2528301
Publication date: 1968
Published in: Mathematische Annalen (Search for Journal in Brave)
Full work available at URL: https://eudml.org/doc/161681
Related Items
Non-existence of holomorphic solutions of $\partial u/\partial z_1 = f$ ⋮ On the Alexander-Pontrjagin duality theorem ⋮ On the solvability of linear partial differential equations in spaces of hyperfunctions ⋮ Hyperfunction solutions of the zero-rest-mass field equations ⋮ Theorems on the finite-dimensionality of cohomology groups, II ⋮ A proof of Ehrenpreis' fundamental principle in hyperfunctions ⋮ Theorems on the finite-dimensionality of cohomology groups, III ⋮ Theorems on the finite-dimensionality of cohomology groups, IV ⋮ Note on continuation of real analytic solutions of partial differential equations with constant coefficients ⋮ Professor Mikio Sato and microlocal analysis ⋮ Limiting Bourgain-Brezis estimates for systems of linear differential equations: theme and variations ⋮ Approximationseigenschaft, Lifting und Kohomologie bei lokalkonvexen Produktgarben ⋮ Vanishing of cohomology groups on completely k-convex sets ⋮ Sur les ultradistributions cohomologiques ⋮ Extension of Hyperfunction Solutions of Linear Differential Equations with Constant Coefficients ⋮ Completeness of noncompact analytic spaces ⋮ Analyse microlocale sur les variétés de Cauchy-Riemann et problème du prolongement des solutions holomorphes des équations aux dérivées partielles
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Un théorème de dualité
- A metric result about the zeros of a complex polynomial ideal
- On Levi's problem and the imbedding of real-analytic manifolds
- Differentiability properties of solutions of systems of differential equations
- Faisceaux sur des variétés analytiques réelles
- HYPERFUNCTIONS AND LINEAR PARTIAL DIFFERENTIAL EQUATIONS
- A characterization of real analytic functions