Mathematical Research Data Initiative
Main page
Recent changes
Random page
Help about MediaWiki
Create a new Item
Create a new Property
Create a new EntitySchema
Merge two items
In other projects
Discussion
View source
View history
Purge
English
Log in

On the magnitude of the integer solutions of the equation \(ax^ 2 +by^ 2 +cz^ 2 = 0\)

From MaRDI portal
Publication:2531078
Jump to:navigation, search

DOI10.1016/0022-314X(69)90019-5zbMath0169.06104MaRDI QIDQ2531078

L. J. Mordell

Publication date: 1969

Published in: Journal of Number Theory (Search for Journal in Brave)


zbMATH Keywords

number theory


Mathematics Subject Classification ID

Quadratic and bilinear Diophantine equations (11D09)


Related Items

Holzer's theorem in \(k[t\)] ⋮ On parametric and matrix solutions to the Diophantine equation \(x^2+\mathrm{d} y^2- z^2=0\) where \(d\) is a positive square-free Integer ⋮ The Legendre equation in Euclidean imaginary quadratic number fields ⋮ On the magnitude of the integer solutions of the semi-diagonal equation ax2 + by2 + cz2 + dxy = 0 ⋮ On the magnitude of the Gaussian integer solutions of the Legendre equation ⋮ Small solutions of the Legendre equation



Cites Work

  • Unnamed Item
  • Kleine Lösungen der diophantischen Gleichung \(ax^2+by^2=cz^2\)
  • On the equation \(ax^2+by^2+cz^2=0\)
  • Minimal Solutions of Diophantine Equations
Retrieved from "https://portal.mardi4nfdi.de/w/index.php?title=Publication:2531078&oldid=15260539"
Tools
What links here
Related changes
Special pages
Printable version
Permanent link
Page information
MaRDI portal item
This page was last edited on 3 February 2024, at 05:43.
Privacy policy
About MaRDI portal
Disclaimers
Imprint
Powered by MediaWiki