Endliche Erzeugbarkeit arithmetischer Gruppen über Funktionenkörpern

From MaRDI portal
Publication:2531311

DOI10.1007/BF01418772zbMath0169.34802OpenAlexW1993672512MaRDI QIDQ2531311

Helmut Behr

Publication date: 1969

Published in: Inventiones Mathematicae (Search for Journal in Brave)

Full work available at URL: https://eudml.org/doc/141951




Related Items (25)

On the congruence subgroup problem. IIFiniteness properties of soluble arithmetic groups over global function fields.Linear groups over general rings. I: Generalities.Finiteness properties of arithmetic groups over function fields.Lattices of minimum covolume are non-uniformAn extension of the Khinchin–Groshev theoremFinite presentability of arithmetic groups over global function fieldsFilling boundaries of coarse manifolds in semisimple and solvable arithmetic groupsHomological properties of certain arithmetic groups in the function field caseFiniteness of quotient groups of discrete subgroupsHigher finiteness properties of reductive arithmetic groups in positive characteristic: the rank theorem.Connectivity properties of horospheres in Euclidean buildings and applications to finiteness properties of discrete groups.Abstract involutions of algebraic groups and of Kac–Moody groupsA building-theoretic approach to relative Tamagawa numbers of semisimple groups over global function fieldsSemidualities from products of treesLinear groupsThe isogeny conjecture for \(t\)-motives associated to direct sums of Drinfeld modulesZur Frage der endlichen Präsentierbarkeit gewisser arithmetischer Gruppen im FunktionenkörperfallThe word and Riemannian metrics on lattices of semisimple groupsOn the congruence subgroup problemDiscrete subgroups of algebraic groups over local fields of positive characteristicsSelf-similar groups of type \(FP_n\)Cobounded subgroups of algebraic groups over local fieldsNombres de Tamagawa et groupes unipotents en caractéristique pReduction theory over global fields



Cites Work


This page was built for publication: Endliche Erzeugbarkeit arithmetischer Gruppen über Funktionenkörpern