A Weierstrass-Stone theorem for Choquet simplexes
From MaRDI portal
Publication:2532044
DOI10.5802/aif.283zbMath0172.15604OpenAlexW2326617600MaRDI QIDQ2532044
D. A. Edwards, G. F. Vincent-Smith
Publication date: 1968
Published in: Annales de l'Institut Fourier (Search for Journal in Brave)
Full work available at URL: http://www.numdam.org/item?id=AIF_1968__18_1_261_0
Related Items (7)
Affine images of compact convex sets and maximal measures ⋮ Subduals and tensor products of spaces of harmonic functions ⋮ Simplicial cones in potential theory ⋮ Convex sets, extreme points, and simplexes ⋮ Homomorphisms and inverse limits of Choquet simplexes ⋮ Uniform approximation of harmonic functions ⋮ Applications of Choquet simplexes to elliptic and parabolic boundary value problems
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Šilovscher Rand und Dirichletsches Problem
- Minimalstellen von Funktionen und Extremalpunkte. II
- Structure in simplexes
- Existence et unicité des représentations intégrales dans les convexes compacts quelconques
- On fundamental properties of a Banach space with a cone
- Concrete representation of abstract (M)-spaces. (A characterization of the space of continuous functions.)
- Extension of compact operators
- On the Homeomorphic Affine Embedding of a Locally Compact Cone into a Banach Dual Space Endowed with the Vague Topology
This page was built for publication: A Weierstrass-Stone theorem for Choquet simplexes