The Diederich-Fornæss exponent and non-existence of Stein domains with Levi-flat boundaries
From MaRDI portal
Publication:254254
DOI10.1007/s12220-014-9546-6zbMath1341.32026arXiv1401.1834OpenAlexW2592326649MaRDI QIDQ254254
Publication date: 8 March 2016
Published in: The Journal of Geometric Analysis (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1401.1834
Related Items
Bergman kernel and hyperconvexity index ⋮ A CR Proof for a Global Estimate of the Diederich–Fornaess Index of Levi-Flat Real Hypersurfaces ⋮ Log-hyperconvexity index and Bergman kernel ⋮ The intrinsic geometry on bounded pseudoconvex domains ⋮ TAKEUCHI'S EQUALITY FOR THE LEVI FORM OF THE FUBINI-STUDY DISTANCE TO COMPLEX SUBMANIFOLDS IN COMPLEX PROJECTIVE SPACES ⋮ Weakly 1‐completeness of holomorphic fiber bundles over compact Kähler manifolds ⋮ The core of the Levi distribution ⋮ Estimates for \(\overline{\partial}\) on domains in \(\mathbb{C}^n\) and \(\mathbb{CP}^n\) ⋮ The Diederich-Fornæss index. II: For domains of trivial index ⋮ Geometric Analysis on the Diederich-Forn{\ae}ss Index ⋮ Bounded plurisubharmonic exhaustion functions and Levi-flat hypersurfaces ⋮ Curvature restrictions for Levi-flat real hypersurfaces in complex projective planes ⋮ On weighted Bergman spaces of a domain with Levi-flat boundary ⋮ The Diederich-Fornæss index. I: For domains of non-trivial index
Cites Work
- Unnamed Item
- On \(L^2\)-estimates for \(\bar\partial\) on a pseudoconvex domain in a complete Kähler manifold with positive holomorphic bisectional curvature
- Comparison of the Bergman and Szegö kernels
- Global regularity for the \(\bar{\delta}\)-Neumann operator and bounded plurisubharmonic exhaustion functions
- The \(\bar\partial\)-Cauchy problem and nonexistence of Lipschitz Levi-flat hypersurfaces in \(\mathbb{C}P^n\) with \(n \geq 3\)
- Sobolev estimates for the \({\bar \partial}\)-Neumann operator on domains in \({\mathbb{C}}^ n\) admitting a defining function that is plurisubharmonic on the boundary
- The order of plurisubharmonicity on pseudoconvex domains with Lipschitz boundaries
- A note on plurisubharmonic defining functions in \({\mathbb{C}^{n}}\)
- Mesures de Monge-Ampère et mesures pluriharmoniques. (Monge-Ampère measures and pluriharmonic measures)
- Une classe de domaines pseudoconvexes. (A class of pseudoconvex domains)
- On Kähler manifolds of positive bisectional curvature and a theorem of Hartogs
- Fonctions plurisousharmoniques d'exhaustion bornees et domaines taut
- Behavior of the Bergman projection on the Diederich-Fornæss worm
- Some conditions for uniform H-convexity
- Pseudoconvex domains: An example with nontrivial nebenhuelle
- Pseudoconvex domains: bounded strictly plurisubharmonic exhaustion functions
- A note on projective Levi flats and minimal sets of algebraic foliations
- Nonexistence of smooth Levi-flat hypersurfaces in complex projective spaces of dimension \(\geq 3\)
- A Sobolev mapping property of the Bergman kernel
- Stein domains with Levi-plane boundaries on compact complex surfaces
- Estimates for the \(\bar\partial\)-Neumann problem and nonexistence of \(C^2\) Levi-flat hypersurfaces in \(\mathbb{C} P^n\)
- Domaines pseudoconvexes infinis et la métrique riemannienne dans un espace projectif
- The Diederich-Fornaess index and the global regularity of the \(\bar \partial\)-Neumann problem
- Bounded p.s.h. functions and pseudoconvexity in Kähler manifold
- A Remark on Bounded Strictly Plurisubharmonic Exhaustion Functions
- The Bergman metric and the pluricomplex Green function
- Good Stein neighborhood bases and regularity of the \(\overline{\partial}\)-Neumann problem