On the zeta function of a hypersurface. IV: A deformation theory for singular hypersurfaces
From MaRDI portal
Publication:2545070
DOI10.2307/1970727zbMath0213.47402OpenAlexW2328502494MaRDI QIDQ2545070
Publication date: 1969
Published in: Annals of Mathematics. Second Series (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.2307/1970727
Zeta functions and related questions in algebraic geometry (e.g., Birch-Swinnerton-Dyer conjecture) (14G10) Hypersurfaces and algebraic geometry (14J70) Formal methods and deformations in algebraic geometry (14D15)
Related Items
The diagonal of a D-finite power series is D-finite ⋮ Géométrie rigide et cohomologie des variétés algébriques de caractéristique $p$ ⋮ Une introduction naïve aux cohomologies de Dwork ⋮ The number of \(\mathbb F_p\)-points on Dwork hypersurfaces and hypergeometric functions ⋮ Finiteness theorems for the cohomology of an overconvergent isocrystal on a curve