The structure of a von Neumann algebra with a homogeneous periodic state

From MaRDI portal
Publication:2562603

DOI10.1007/BF02392037zbMath0267.46047OpenAlexW2323990519WikidataQ121812311 ScholiaQ121812311MaRDI QIDQ2562603

Masamichi Takesaki

Publication date: 1973

Published in: Acta Mathematica (Search for Journal in Brave)

Full work available at URL: https://doi.org/10.1007/bf02392037




Related Items (25)

Galois groups of quantum group actions and regularity of fixed-point algebrasDuality Theory for Covariant SystemsOn the normalizing groupoids and the commensurability groupoids for inclusions of factors associated to ergodic equivalence relations-subrelationsLinear Radon-Nikodym theorems for states on a von Neumann algebraNotes on algebraic invariants for non-commutative dynamical systemsNormal states are determined by their facial distances IIPeriodic and homogeneous states on a von Neumann algebra. IIICompact Abelian group actions on injective factorsThe Effros-Ruan conjecture for bilinear forms on \(C^{*}\)-algebrasOn a Fourier expansion in continuous crossed productsOn ergodic flows and the isomorphism of factorsSymmetry and equilibrium statesThe Hardy spaces associated with a periodic flow on a von Neumann algebraStrong rigidity of \(\text{II}_1\) factors arising from malleable actions of \(w\)-rigid groups. IGeneralized K-flowsCompact Abelian Prime Actions on Von Neumann AlgebrasUnbounded derivations and invariant statesUltraproducts of von Neumann algebrasDuality for crossed products and the structure of von Neumann algebras of type IIIStructure of some von Neumann algebras with isolated discrete modular spectrumContinuous model theories for von Neumann algebrasYang–Baxter endomorphismsCentralizers and an ordering for faithful, normal statesSome contact points of mathematics and physicsOn maximal Abelian self-adjoint subalgebras of factors of type II\(_1\)



Cites Work


This page was built for publication: The structure of a von Neumann algebra with a homogeneous periodic state