The \(q\)-deformed Campbell-Baker-Hausdorff-Dynkin theorem
DOI10.3934/era.2015.22.32zbMath1332.05020OpenAlexW2525292808MaRDI QIDQ256352
Jacob Katriel, Rüdiger Achilles, Andrea Bonfiglioli
Publication date: 9 March 2016
Published in: Electronic Research Announcements in Mathematical Sciences (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.3934/era.2015.22.32
\(q\)-calculus\(q\)-commutator identitiesCampbell-Baker-Hausdorff-Dynkin (CBHD) seriesexponential theoremq-deformed CBHD series
Exact enumeration problems, generating functions (05A15) (q)-calculus and related topics (05A30) Quantum groups (quantized enveloping algebras) and related deformations (17B37) Quantum groups and related algebraic methods applied to problems in quantum theory (81R50) Ring-theoretic aspects of quantum groups (16T20)
Related Items
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- The \(q\)-deformed Campbell-Baker-Hausdorff-Dynkin theorem
- Topics in noncommutative algebra. The theorem of Campbell, Baker, Hausdorff and Dynkin
- Twisted dendriform algebras and the pre-Lie Magnus expansion
- Disentangling \(q\)-exponentials: a general approach
- \(q\)-exponentials on quantum spaces
- A Magnus- and Fer-type formula in dendriform algebras.
- Operatormethoden für q-identitäten
- A q-analog of the Campbell-Baker-Hausdorff formula
- On the \(q\)-analogues of the Zassenhaus formula for disentangling exponential operators.
- Coherent states of the \(q\)-canonical commutation relations
- The \(q\)-Zassenhaus formula
- Bose-Einstein condensation of a quon gas.
- Dendriform equations
- A Comprehensive Treatment of q-Calculus
- A q-analogue of the Campbell-Baker-Hausdorff expansion
- On some unsolved problems in quantum group theory
- Exponential mapping for non-semisimple quantum groups
- A no-go theorem for a Lie-consistent q-Campbell–Baker–Hausdorff expansion
- Ordering relations for q-boson operators, continued fraction techniques and the q-CBH enigma
- Hilbert spaces of analytic functions and generalized coherent states
- Quantum groups
- Quantum calculus