Characters of finite reductive groups and \(D\)-modules.
zbMath1147.20312MaRDI QIDQ2569663
Publication date: 20 October 2005
Published in: Rendiconti del Seminario Matematico della Università di Padova (Search for Journal in Brave)
Full work available at URL: http://www.numdam.org/item?id=RSMUP_2001__106__1_0
cohomology groupsconnected reductive algebraic groupsBorel subgroupsnilpotent orbitsperverse sheavesreductive group schemesSpringer correspondenceSpringer representationsholonomic \(\mathcal D\)-modulesbase changesactions of Weyl groupsirreducible ordinary representations
Linear algebraic groups over finite fields (20G40) Representation theory for linear algebraic groups (20G05) Cohomology theory for linear algebraic groups (20G10)
Cites Work
- The invariant holonomic system on a semisimple Lie algebra
- Unipotent representations of complex semisimple groups
- A unipotent support for irreducible representations
- Representations of reductive groups over finite fields
- Trigonometric sums, Green functions of finite groups and representations of Weyl groups
- \(L\)-functions associated to overconvergent \(F\)-isocrystals
- \(D\)-modules and representation theory of Lie groups
- Finiteness and cohomological purity in rigid cohomology (with an appendix by Aise Johan de Jong)
- Characteristic varieties of character sheaves
- Nilpotent connections and the monodromy theorem: Applications of a result of Turrittin
- Étale Slices for Algebraic Transformation Groups in Characteristic p
- Géométrie rigide et cohomologie des variétés algébriques de caractéristique $p$
- Sur le theoreme de finitude de la cohomologie p -adique d'une variete affine non singuliere.
- Dualité de Poincaré et formule de Künneth en cohomologie rigide
- Un théorème de comparaison entre les faisceaux d’opérateurs différentiels de Berthelot et de Mebkhout-Narváez-Macarro
- ${\scr D}$-modules arithmétiques. I. Opérateurs différentiels de niveau fini
- Weak Formal Schemes
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: Characters of finite reductive groups and \(D\)-modules.