The symplectic Kadomtsev-Petviashvili hierarchy and rational solutions of Painlevé VI.
From MaRDI portal
Publication:2574192
DOI10.5802/aif.2145zbMath1093.14015arXivnlin/0406038OpenAlexW1638033494MaRDI QIDQ2574192
Johan W. van de Leur, Henrik Aratyn
Publication date: 18 November 2005
Published in: Annales de l'Institut Fourier (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/nlin/0406038
Lua error in Module:PublicationMSCList at line 37: attempt to index local 'msc_result' (a nil value).
Related Items (2)
The ``ghost symmetry in the CKP hierarchy ⋮ Bäcklund transformations for certain rational solutions of Painlevé VI
Cites Work
- Solitons and infinite dimensional Lie algebras
- Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. I: General theory and \(\tau \)-function
- Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. II
- Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. III
- An analytic description of the vector constrained KP hierarchy
- Solutions of the WDVV equations and integrable hierarchies of KP type
- Monodromy of certain Painlevé-VI transcendents and reflection groups
- Geometric Bäcklund-Darboux transformations for the KP hierarchy
- The construction of Frobenius manifolds from KP tau-functions
- Twistor spaces, Einstein metrics and isomonodromic deformations
- Frobenius manifolds and Virasoro constraints
- Integrable structure behind the WDVV equations
- KP Hierarchies of Orthogonal and Symplectic Type–Transformation Groups for Soliton Equations VI–
- The n-component KP hierarchy and representation theory
- Picard and Chazy solutions to the Painlevé VI equation
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: The symplectic Kadomtsev-Petviashvili hierarchy and rational solutions of Painlevé VI.