The uniform saturation property for a singularly perturbed reaction-diffusion equation
DOI10.1007/s00211-005-0606-5zbMath1082.65124OpenAlexW1994880218MaRDI QIDQ2574943
Publication date: 5 December 2005
Published in: Numerische Mathematik (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s00211-005-0606-5
singular perturbationuniform convergencenumerical experimentsadaptive finite element methodsa posteriori error estimationinexact Galerkin solutionnonuniform finite element partitionsuniform saturation property
Boundary value problems for second-order elliptic equations (35J25) Singular perturbations in context of PDEs (35B25) Error bounds for boundary value problems involving PDEs (65N15) Stability and convergence of numerical methods for boundary value problems involving PDEs (65N12) Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs (65N30)
Related Items
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Robust a posteriori error estimators for a singularly perturbed reaction-diffusion equation
- Fast computation in adaptive tree approximation
- Adaptive finite element methods with convergence rates
- An adaptive multilevel approach to parabolic equations III. 2D error estimation and multilevel preconditioning
- Reliable and Robust A Posteriori Error Estimation for Singularly Perturbed Reaction-Diffusion Problems
- Data Oscillation and Convergence of Adaptive FEM
- A Convergent Adaptive Algorithm for Poisson’s Equation
- An Optimal Adaptive Finite Element Method
- Robust a posteriori error estimation for a singularly perturbed reaction--diffusion equation on anisotropic tetrahedral meshes