Least-squares orthogonalization using semidefinite programming
From MaRDI portal
Publication:2576234
DOI10.1016/j.laa.2005.07.010zbMath1081.65034OpenAlexW2015800490WikidataQ114851470 ScholiaQ114851470MaRDI QIDQ2576234
Publication date: 27 December 2005
Published in: Linear Algebra and its Applications (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.laa.2005.07.010
semidefinite programmingnumerical examplesHilbert spaceorthogonalizationleast-squaresGram-Schmidt methodquantum detectiongeometric uniformity
Numerical solutions to overdetermined systems, pseudoinverses (65F20) Orthogonalization in numerical linear algebra (65F25)
Uses Software
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Orthogonal and projected orthogonal matched filter detection
- Solving Euclidean distance matrix completion problems via semidefinite progrmming
- Optimum measurements for discrimination among symmetric quantum states and parameter estimation
- Least-squares inner product shaping
- Geometrically uniform codes
- An optimal whitening approach to linear multiuser detection
- Optimal Detection of Symmetric Mixed Quantum States
- Matrix Analysis
- Ten Lectures on Wavelets
- Using SeDuMi 1.02, A Matlab toolbox for optimization over symmetric cones
- On quantum detection and the square-root measurement
- Optimal tight frames and quantum measurement
- Geometrically uniform frames
- Designing optimal quantum detectors via semidefinite programming
- Semidefinite Programming
- Orthogonal multiuser detection
This page was built for publication: Least-squares orthogonalization using semidefinite programming