A conjecture concerning the pure exponential Diophantine equation \(a^x+b^y= c^z\)
From MaRDI portal
Publication:2581228
DOI10.1007/s10114-004-0436-xzbMath1159.11308OpenAlexW2023522367WikidataQ123161670 ScholiaQ123161670MaRDI QIDQ2581228
Publication date: 9 January 2006
Published in: Acta Mathematica Sinica. English Series (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s10114-004-0436-x
Related Items (4)
A note on the exceptional solutions of Jeśmanowicz' conjecture concerning primitive Pythagorean triples ⋮ On the Terai-Jésmanowicz conjecture ⋮ On the Diophantine equation $(5pn^{2}-1)^{x}+(p(p-5)n^{2}+1)^{y}=(pn)^{z}$ ⋮ ON THE CONJECTURE OF JEŚMANOWICZ CONCERNING PYTHAGOREAN TRIPLES
Cites Work
- The diophantine equation \(a^ x+b^ y=c^ z\)
- Zur Approximation algebraischer Zahlen. I: Über den grössten Primteiler binärer Formen
- The diophantine equation \(a^ x + b^ y = c^ z\). III
- Existence of primitive divisors of Lucas and Lehmer numbers
- Some diophantine equations of the form $x^n + y^n = z^m$
- Applications of a lower bound for linear forms in two logarithms to exponential Diophantine equations
- A note on the Diophantine equation $a^x + b^y = c^z$
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: A conjecture concerning the pure exponential Diophantine equation \(a^x+b^y= c^z\)