Variational approach to solutions for a class of Kirchhoff type fractional differential equations without compactness conditions
From MaRDI portal
Publication:260381
DOI10.3103/S1068362315060035zbMath1335.34020MaRDI QIDQ260381
F. Blanchet-Sadri, M. Dambrine
Publication date: 21 March 2016
Published in: Journal of Contemporary Mathematical Analysis. Armenian Academy of Sciences (Search for Journal in Brave)
Nonlinear differential equations in abstract spaces (34G20) Applications of variational problems in infinite-dimensional spaces to the sciences (58E50) Fractional ordinary differential equations (34A08)
Cites Work
- Critical point theory and Hamiltonian systems
- Fractional differential equations. An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications
- Bifurcation into spectral gaps
- Ground state solution for differential equations with left and right fractional derivatives
- EXISTENCE RESULTS FOR FRACTIONAL BOUNDARY VALUE PROBLEM VIA CRITICAL POINT THEORY
- Advances in Fractional Calculus
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: Variational approach to solutions for a class of Kirchhoff type fractional differential equations without compactness conditions