Inverse spectral theory for semiclassical Jaynes-Cummings systems
DOI10.1007/s00208-015-1259-zzbMath1338.53107arXiv1407.5159OpenAlexW1544765747MaRDI QIDQ261446
Álvaro Pelayo, Yohann Le Floch, San Vũ Ngoc
Publication date: 23 March 2016
Published in: Mathematische Annalen (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1407.5159
Symplectic manifolds (general theory) (53D05) Asymptotic distributions of eigenvalues in context of PDEs (35P20) Completely integrable finite-dimensional Hamiltonian systems, integration methods, integrability tests (37J35) Semiclassical techniques, including WKB and Maslov methods applied to problems in quantum theory (81Q20) Completely integrable systems and methods of integration for problems in Hamiltonian and Lagrangian mechanics (70H06)
Related Items (13)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Diophantine tori and non-selfadjoint inverse spectral problems
- Constructing integrable systems of semitoric type
- Berezin-Toeplitz quantization for compact Kähler manifolds. A review of results
- Hamiltonian dynamics and spectral theory for SPIN-oscillators
- Spektrale Starrheit gewisser Drehflächen
- Homogeneous quantization and multiplicities of group representations
- Semitoric integrable systems on symplectic 4-manifolds
- Moment polytopes for symplectic manifolds with monodromy
- Symbolic calculus for Toeplitz operators with half-form
- Semi-classical properties of geometric quantization with metaplectic correction
- Normal forms for Hamiltonian systems with Poisson commuting integrals - elliptic case
- Toeplitz operators on symplectic manifolds
- Spectre conjoint d'opérateurs pseudo-différentiels qui commutent. II. Le cas intégrable
- The spectrum of positive elliptic operators and periodic bicharacteristics
- Spectre conjoint d'opérateurs pseudo-différentiels qui commutent. I: Le cas non intégrable
- Semiclassical spectral estimates for Toeplitz operators
- Berezin--Toeplitz operators, a semi-classical approach
- The inverse spectral problem for surfaces of revolution
- On semi-global invariants for focus-focus singularities
- Semiclassical inverse spectral theory for singularities of focus-focus type
- Toeplitz operators and Hamiltonian torus actions
- A semi-classical inverse problem I: Taylor expansions
- Symplectic inverse spectral theory for pseudodifferential operators
- Semiclassical quantization and spectral limits of ħ-pseudodifferential and Berezin-Toeplitz operators
- Equivariant normal form for nondegenerate singular orbits of integrable Hamiltonian systems
- Hamiltoniens périodiques et images convexes de l'application moment
- On global action-angle coordinates
- The Spectral Theory of Toeplitz Operators. (AM-99)
- Quasimodes and Bohr-Sommerfeld Conditions for the Toeplitz Operators
- Semiclassical eigenvalues and shape problems on surfaces of revolution
- Isospectrality for quantum toric integrable systems
- Spectral monodromy of non-self-adjoint operators
This page was built for publication: Inverse spectral theory for semiclassical Jaynes-Cummings systems