A probabilistic proof of Schoenberg's theorem
DOI10.1016/j.jmaa.2018.11.046zbMath1486.60032arXiv1808.00190OpenAlexW2886060716WikidataQ128934454 ScholiaQ128934454MaRDI QIDQ2633838
Franziska Kühn, Rene L. Schilling
Publication date: 10 May 2019
Published in: Journal of Mathematical Analysis and Applications (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1808.00190
Infinitely divisible distributions; stable distributions (60E07) Processes with independent increments; Lévy processes (60G51) Probability measures on topological spaces (60B05) Characteristic functions; other transforms (60E10) Brownian motion (60J65) Stable stochastic processes (60G52) Special properties of functions of several variables, Hölder conditions, etc. (26B35)
Related Items
Uses Software
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Positive definite functions depending on the norm
- On the domain of fractional Laplacians and related generators of Feller processes
- Coupling property and gradient estimates of Lévy processes via the symbol
- Fonctions operant sur les fonctions definies-négatives
- Positive definite symmetric functions on linear spaces
- Spherical distributions: Schoenberg (1938) revisited
- Measures, Integrals and Martingales
- Gradient estimates of harmonic functions and transition densities for Lévy processes
- A Short Proof of Schoenberg's Theorem
- On the unimodality of infinitely divisible distribution functions
- A note on the existence of transition probability densities of Lévy processes
- Sur la théorie semi-classique du potentiel pur les processus à accroissements indépendants
- Bernstein functions. Theory and applications
- Scattered Data Approximation