Poles of \(| f(z,w)| ^{2s}\) and roots of the b-function
From MaRDI portal
Publication:2639999
DOI10.1007/BF02386377zbMath0719.32016OpenAlexW2073977274MaRDI QIDQ2639999
Publication date: 1989
Published in: Arkiv för Matematik (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/bf02386377
Sheaves of differential operators and their modules, (D)-modules (32C38) Germs of analytic sets, local parametrization (32B10) Local complex singularities (32S05)
Related Items (15)
Monodromy conjecture for log generic polynomials ⋮ Jumping coefficients of multiplier ideals ⋮ Bernstein-Sato Polynomials in Commutative Algebra ⋮ Archimedean zeta functions and oscillatory integrals ⋮ Monodromy Jordan blocks, \(b\)-functions and poles of zeta functions for germs of plane curves ⋮ Poles of the complex zeta function of a plane curve ⋮ HODGE IDEALS FOR -DIVISORS, -FILTRATION, AND MINIMAL EXPONENT ⋮ Complex analysis -- differential and algebraic methods in Kähler spaces. Abstracts from the workshop held April 9--14, 2023 ⋮ THE LOG CANONICAL THRESHOLD OF HOLOMORPHIC FUNCTIONS ⋮ Bernstein -- Sato polynomials on normal toric varieties ⋮ Periods and the asymptotics of a diophantine problem. I ⋮ Semi-continuity of complex singularity exponents and Kähler–Einstein metrics on Fano orbifolds ⋮ Yano's conjecture ⋮ Unnamed Item ⋮ Upper bounds for roots of \(b\)-functions, following Kashiwara and Lichtin
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Some local consequences of Hodge theory
- Lectures on forms of higher degree. Notes by S. Raghavan
- B-functions and holonomic systems. Rationality of roots of B-functions
- Développement asymptotique des fonctions obtenues par intégration sur les fibres
- Contribution effective de la monodromie aux développements asymptotiques
- Some Algebro-Geometric Formulae for Poles of | f(x, y) | s
- ASYMPTOTIC HODGE STRUCTURE IN THE VANISHING COHOMOLOGY
This page was built for publication: Poles of \(| f(z,w)| ^{2s}\) and roots of the b-function