An infinite dimensional convolution theorem with applications to random censoring and missing data models
From MaRDI portal
Publication:2641029
DOI10.1016/0378-3758(90)90013-KzbMath0721.62035MaRDI QIDQ2641029
Publication date: 1990
Published in: Journal of Statistical Planning and Inference (Search for Journal in Brave)
random censoringlower boundmissing dataregular estimatorinfinite dimensional convolution theoremsMeier estimator
Asymptotic properties of nonparametric inference (62G20) Nonparametric estimation (62G05) Sufficiency and information (62B99)
Related Items
A central limit theorem for functionals of the Kaplan-Meier estimator, Best precedence tests for censored data, Some developments in semiparametric statistics
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Information and asymptotic efficiency in parametric-nonparametric models
- Large sample behaviour of the product-limit estimator on the whole line
- Efficient estimation in some missing data problems
- Asymptotic optimality of the product limit estimator
- Estimating a distribution function
- Addendum to ``A third-order optimum property of the maximum likelihood estimator
- The product-limit estimator and the bootstrap: Some asymptotic representations
- Nonparametric Estimation from Incomplete Observations
- Non-parametric applications of an infinite dimensional convolution theorem
- A characterization of limiting distributions of regular estimates