Lattice-ordered fields determined by \(d\)-elements
From MaRDI portal
Publication:2642574
DOI10.1007/s10485-007-9063-xzbMath1130.06008OpenAlexW2132763047MaRDI QIDQ2642574
Publication date: 17 August 2007
Published in: Applied Categorical Structures (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s10485-007-9063-x
algebraic extensionlattice-ordered ringadjoint functorWilson basislattice-ordered field\(d\)-element\(f\)-element
Adjoint functors (universal constructions, reflective subcategories, Kan extensions, etc.) (18A40) Ordered rings, algebras, modules (06F25) Vector spaces, linear dependence, rank, lineability (15A03)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Lattice-ordered fields
- Lattice-ordered fields as convolution algebras
- Lattice orderings on the real field
- Finitely-valued f-modules
- Some Structure Theorems for Lattice-Ordered Groups
- Subfields of Lattice-Ordered Fields That Mimic Maximal Totally Ordered Subfields