Contributions to the theory of the Dirichlet \(L\)-series and the Epstein zeta-functions

From MaRDI portal
Publication:2653338

DOI10.2307/1968761zbMath0063.07004OpenAlexW2329471412WikidataQ110943161 ScholiaQ110943161MaRDI QIDQ2653338

Carl Ludwig Siegel

Publication date: 1943

Published in: Annals of Mathematics. Second Series (Search for Journal in Brave)

Full work available at URL: https://doi.org/10.2307/1968761




Related Items (24)

Gram's law in the theory of the Riemann zeta-function. IOn the fourth moment of the Epstein zeta functions and the related divisor problemOn the Epstein zeta function and the zeros of a class of Dirichlet seriesComputational Number Theory, Past, Present, and FutureCertain extensions of results of Siegel, Wilton and HardyCorrections to: The mean square of Dirichlet L-functionsZeros of the Dirichlet L-functions on short segments of the critical lineOn Epstein's zeta function. IINumerical Computations Concerning the ERHOn the zeros of the zeta function of one ternary quadratic formOn the zeros of the derivative of the zeta function of a ternary quadratic formA new application of the Gram pointsOn the zeros of Dirichlet's L-function on the critical lineOn the zeros of the zeta function of the quadratic form $x^2+y^2+z^2$An alternative to Riemann-Siegel type formulasAsymptotische Entwicklungen der Dirichletschen L-ReihenThe zeros of the Artin L-series of a cubic field on the critical lineOn a result of G. Pólya concerning the Riemann \(\xi\)-functionOn the distribution of values of Hardy's \(Z\)-functions in short intervals. II: The \(q\)-aspectEine Summenformel für Laplace-Transformierte und ihre Anwendung auf Dirichlet-ReihenOn the cubic $L$-functionOn the minima and convexity of Epstein zeta functionThe mean square of Dirichlet L-functionsA generalization of the Riemann-Siegel formula




This page was built for publication: Contributions to the theory of the Dirichlet \(L\)-series and the Epstein zeta-functions