Contributions to the theory of the Dirichlet \(L\)-series and the Epstein zeta-functions
From MaRDI portal
Publication:2653338
DOI10.2307/1968761zbMath0063.07004OpenAlexW2329471412WikidataQ110943161 ScholiaQ110943161MaRDI QIDQ2653338
Publication date: 1943
Published in: Annals of Mathematics. Second Series (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.2307/1968761
(zeta (s)) and (L(s, chi)) (11M06) Analytic theory (Epstein zeta functions; relations with automorphic forms and functions) (11E45)
Related Items (24)
Gram's law in the theory of the Riemann zeta-function. I ⋮ On the fourth moment of the Epstein zeta functions and the related divisor problem ⋮ On the Epstein zeta function and the zeros of a class of Dirichlet series ⋮ Computational Number Theory, Past, Present, and Future ⋮ Certain extensions of results of Siegel, Wilton and Hardy ⋮ Corrections to: The mean square of Dirichlet L-functions ⋮ Zeros of the Dirichlet L-functions on short segments of the critical line ⋮ On Epstein's zeta function. II ⋮ Numerical Computations Concerning the ERH ⋮ On the zeros of the zeta function of one ternary quadratic form ⋮ On the zeros of the derivative of the zeta function of a ternary quadratic form ⋮ A new application of the Gram points ⋮ On the zeros of Dirichlet's L-function on the critical line ⋮ On the zeros of the zeta function of the quadratic form $x^2+y^2+z^2$ ⋮ An alternative to Riemann-Siegel type formulas ⋮ Asymptotische Entwicklungen der Dirichletschen L-Reihen ⋮ The zeros of the Artin L-series of a cubic field on the critical line ⋮ On a result of G. Pólya concerning the Riemann \(\xi\)-function ⋮ On the distribution of values of Hardy's \(Z\)-functions in short intervals. II: The \(q\)-aspect ⋮ Eine Summenformel für Laplace-Transformierte und ihre Anwendung auf Dirichlet-Reihen ⋮ On the cubic $L$-function ⋮ On the minima and convexity of Epstein zeta function ⋮ The mean square of Dirichlet L-functions ⋮ A generalization of the Riemann-Siegel formula
This page was built for publication: Contributions to the theory of the Dirichlet \(L\)-series and the Epstein zeta-functions