Fixed point theorems for set-valued \(G\)-contractions in a graphical convex metric space with applications
DOI10.1007/s11784-020-00828-yzbMath1478.54052OpenAlexW3091765554MaRDI QIDQ2659577
Zhenhua Ma, Yanfeng Zhao, Ni Yang, Li Li Chen
Publication date: 26 March 2021
Published in: Journal of Fixed Point Theory and Applications (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s11784-020-00828-y
set-valued mappingsfixed pointMann iterative schemeAgrawal iterative schemegraphical convex metric spaces
Set-valued maps in general topology (54C60) Fixed-point and coincidence theorems (topological aspects) (54H25) Numerical solutions to equations with nonlinear operators (65J15) Special maps on metric spaces (54E40)
Related Items (2)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Fixed points of Mizoguchi-Takahashi contraction on a metric space with a graph and applications
- Generic well-posedness of fixed point problems
- Well-posedness of fixed point problems
- Approximate selections, best approximations, fixed points, and invariant sets
- Equilibrium problems and applications
- Borsuk's antipodal fixed points theorems for compact or condensing set-valued maps
- Exponential stability of a class of nonlinear systems via fixed point theory
- Fixed point results for multivalued contractions on a metric space with a graph
- Iterative approximation of common attractive points of \((\alpha ,\beta )\)-generalized hybrid set-valued mappings
- Graphical metric space: a generalized setting in fixed point theory
- Multi-valued contraction mappings
- Multi-valued contraction mappings in generalized metric spaces
- A novel approach of graphical rectangular $b$-metric spaces with an application to the vibrations of a vertical heavy hanging cable
- Almost monotone contractions on weighted graphs
- Fixed point theorems for singlevalued and multivalued generalized contractions in metric spaces endowed with a graph
- Iteration processes for nonexpansive mappings
- A convexity in metric space and nonexpansive mappings. I.
- Nonexpansive iterations in hyperbolic spaces
- A fixed point theorem in partially ordered sets and some applications to matrix equations
- Nonlinear Analysis - Theory and Methods
- WELL-POSEDNESS AND POROSITY OF A CERTAIN CLASS OF OPERATORS
- On Gregus-Ćirić mappings on weighted graphs
- The contraction principle for mappings on a metric space with a graph
This page was built for publication: Fixed point theorems for set-valued \(G\)-contractions in a graphical convex metric space with applications