Rotational symmetry of Weingarten spheres in homogeneous three-manifolds
From MaRDI portal
Publication:2661305
DOI10.1515/crelle-2020-0031zbMath1478.53107arXiv1807.09654OpenAlexW3092182470MaRDI QIDQ2661305
Publication date: 7 April 2021
Published in: Journal für die Reine und Angewandte Mathematik (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1807.09654
Differential geometry of homogeneous manifolds (53C30) Differential geometry of immersions (minimal, prescribed curvature, tight, etc.) (53C42)
Related Items
A quasiconformal Hopf soap bubble theorem ⋮ Delaunay surfaces of prescribed mean curvature in \(\mathrm{Nil}_3\) and \(\widetilde{SL_2}(\mathbb{R})\) ⋮ Rotational surfaces with prescribed mean curvature in \(\mathbb{H}^2 \times \mathbb{R}\) ⋮ Delaunay surfaces of prescribed mean curvature in Berger spheres ⋮ Radial solutions for equations of Weingarten type ⋮ Elliptic Weingarten hypersurfaces of Riemannian products ⋮ Rotational elliptic Weingarten surfaces in \(\mathbb{S}^2\times\mathbb{R}\) and the Hopf problem ⋮ Quasiconformal Gauss maps and the Bernstein problem for Weingarten multigraphs ⋮ Elliptic Weingarten surfaces: singularities, rotational examples and the halfspace theorem ⋮ The global geometry of surfaces with prescribed mean curvature in ℝ³ ⋮ Rotational surfaces of prescribed Gauss curvature in \(\mathbb{R}^3\) ⋮ A Delaunay-type classification result for prescribed mean curvature surfaces in \(\mathbb{M}^2(\kappa) \times \mathbb{R} \) ⋮ Rotational hypersurfaces of prescribed mean curvature
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- A Hopf theorem for non-constant mean curvature and a conjecture of A. D. Alexandrov
- A Hopf differential for constant mean curvature surfaces in \(\mathbb S^2 \times \mathbb R\) and \(\mathbb H^2 \times\mathbb R\)
- Isometric immersions into 3-dimensional homogeneous manifolds
- Complete surfaces of constant curvature in \(H^{2} \times \mathbb R\) and \(S^{2} \times \mathbb R\)
- Rotationally invariant constant mean curvature surfaces in homogeneous 3-manifolds
- Complete surfaces with positive extrinsic curvature in product spaces
- Differential geometry in the large. Seminar lectures New York University 1946 and Stanford University 1956. With a preface by S. S. Chern.
- The geometry of properly embedded special surfaces in \(\mathbb{R}^ 3\); e.g., surfaces satisfying \(aH+bK=1\), where \(a\) and \(b\) are positive
- Elliptic partial differential equations of second order
- Classification of rotational special Weingarten surfaces of minimal type in \({\mathbb{S}^2 \times \mathbb{R}}\) and \({\mathbb{H}^2 \times \mathbb{R}}\)
- Height estimate for special Weingarten surfaces of elliptic type in 𝕄²(𝕔)×ℝ
- Constant mean curvature spheres in ${\rm Sol}_3$
- Existence and uniqueness of constant mean curvature spheres in
- On Special W-Surfaces
- Classification des surfaces de type Delaunay
- Weingarten Type Surfaces in ℍ2× ℝ and 𝕊2× ℝ
- Embeddedness of Spheres in Homogeneous Three-Manifolds
- Constant mean curvature surfaces in metric Lie groups
- The global geometry of surfaces with prescribed mean curvature in ℝ³
- Über Flächen mit einer Relation zwischen den Hauptkrümmungen. Meinem Lehrer Erhard Schmidt in Verehrung und Freundschaft zum 75. Geburtstag gewidmet.
- Umbilical Points and W-Surfaces