Multiplicative functions, exponential sums and the law of large numbers
DOI10.1016/J.INDAG.2015.11.007zbMath1338.11090OpenAlexW2181644962MaRDI QIDQ266168
Publication date: 13 April 2016
Published in: Indagationes Mathematicae. New Series (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.indag.2015.11.007
strong law of large numbersarithmetic progressionexponential sumHalberstam-Richert upper boundmultiplicative coefficientsmultiplicative weightsnonnegative multiplicative functionshort sum
Asymptotic results on arithmetic functions (11N37) Trigonometric and exponential sums (general theory) (11L03) Other results on the distribution of values or the characterization of arithmetic functions (11N64) Arithmetic functions in probabilistic number theory (11K65)
Related Items (3)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- On the law of large numbers and arithmetic functions
- On a result of R. R. Hall
- Some remarks on nonnegative multiplicative functions on arithmetic progressions
- Short sums of certain arithmetic functions
- Friable integers: Turán-Kubilius inequality and applications
- Nair–Tenenbaum uniform with respect to the discriminant–ERRATUM
- Entiers Sans Grand Facteur Premier En Progressions Arithmetiques
- A Brun-Titschmarsh theorem for multiplicative functions.
- On a Brun–Titchmarsh inequality for multiplicative functions
- On exponential sums with multiplicative coefficients, II
- Sur L'Equirepartition Modulo 1 De Certaines Fonctions De Diviseurs
- Sommes d'exponentielles et principe de l'hyperbole
- Convergence of weighted averages of independent random variables
- Exponential sums with multiplicative coefficients
This page was built for publication: Multiplicative functions, exponential sums and the law of large numbers