Strict log-concavity of the Kirchhoff polynomial and its applications to the strong Lefschetz property
DOI10.1016/j.jalgebra.2021.01.037zbMath1460.05091arXiv1904.01800OpenAlexW3136800331MaRDI QIDQ2662207
Takahiro Nagaoka, Akiko Yazawa
Publication date: 9 April 2021
Published in: Journal of Algebra (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1904.01800
prehomogeneous vector spacesGorenstein algebrasstrong Lefschetz propertyKirchhoff polynomialsstrict log-concavity
Graph polynomials (05C31) Matroids in convex geometry (realizations in the context of convex polytopes, convexity in combinatorial structures, etc.) (52B40) Special types (Cohen-Macaulay, Gorenstein, Buchsbaum, etc.) (13H10) Combinatorial aspects of matroids and geometric lattices (05B35) Prehomogeneous vector spaces (11S90) Commutative Artinian rings and modules, finite-dimensional algebras (13E10)
Related Items
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Sperner property and finite-dimensional Gorenstein algebras associated to matroids
- Homaloidal hypersurfaces and hypersurfaces with vanishing Hessian
- Homogeneous multivariate polynomials with the half-plane property
- Hodge theory for combinatorial geometries
- Enumeration of points, lines, planes, etc.
- Lorentzian polynomials
- Lefschetz elements of Artinian Gorenstein algebras and hessians of homogeneous polynomials
- On multivariate Newton-like inequalities
- A classification of irreducible prehomogeneous vector spaces and their relative invariants
- Sperner property, matroids and finite-dimensional Gorenstein algebras