Boundary Lipschitz regularity and the Hopf lemma on Reifenberg domains for fully nonlinear elliptic equations
DOI10.1007/s00229-020-01246-7zbMath1482.35061arXiv1912.11958OpenAlexW3088207906WikidataQ124818768 ScholiaQ124818768MaRDI QIDQ2664567
Wenxiu Xu, Kai Zhang, Yuanyuan Lian
Publication date: 17 November 2021
Published in: Manuscripta Mathematica (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1912.11958
nonlinear elliptic equationsviscosity solutionsReifenberg domainPucci operatorHopf lemmaLipscitz regularity
Smoothness and regularity of solutions to PDEs (35B65) Boundary value problems for second-order elliptic equations (35J25) Nonlinear elliptic equations (35J60) Viscosity solutions to PDEs (35D40)
Related Items (5)
Cites Work
- On \(C^1\), \(C^2\), and weak type-\((1,1)\) estimates for linear elliptic operators. II
- Regularized distance and its applications
- Elliptic partial differential equations of second order
- Regularity for fully nonlinear elliptic equations with oblique boundary conditions
- Boundary behavior of solutions of elliptic equations in nondivergence form
- Differentiability at lateral boundary for fully nonlinear parabolic equations
- User’s guide to viscosity solutions of second order partial differential equations
- On viscosity solutions of fully nonlinear equations with measurable ingredients
- Unnamed Item
- Unnamed Item
This page was built for publication: Boundary Lipschitz regularity and the Hopf lemma on Reifenberg domains for fully nonlinear elliptic equations