Global well-posedness for the \(2\)-D inhomogeneous incompressible Navier-Stokes system with large initial data in critical spaces
DOI10.1007/s00205-021-01710-yzbMath1477.35114arXiv1908.02216OpenAlexW3202645763MaRDI QIDQ2665251
Publication date: 18 November 2021
Published in: Archive for Rational Mechanics and Analysis (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1908.02216
Navier-Stokes equations for incompressible viscous fluids (76D05) Sobolev spaces and other spaces of ``smooth functions, embedding theorems, trace theorems (46E35) Navier-Stokes equations (35Q30) Existence problems for PDEs: global existence, local existence, non-existence (35A01) Existence, uniqueness, and regularity theory for incompressible viscous fluids (76D03) Uniqueness problems for PDEs: global uniqueness, local uniqueness, non-uniqueness (35A02)
Related Items (4)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Uniqueness theorems for the three dimensional Navier-Stokes system
- An extension of the Beale-Kato-Majda criterion for the Euler equations
- Flows of non-Lipschitzian vector fields and Navier-Stokes equations
- Well-posedness for density-dependent incompressible fluids with non-Lipschitz velocity
- On the wellposedness of three-dimensional inhomogeneous Navier-Stokes equations in the critical spaces
- On the global well-posedness of 2-D inhomogeneous incompressible Navier-Stokes system with variable viscous coefficient
- Global existence for an inhomogeneous fluid
- The inviscid limit for density-dependent incompressible fluids
- Navier-Stokes equation with variable density and viscosity in critical space
- Local and global well-posedness results for flows of inhomogeneous viscous fluids
- LOCAL THEORY IN CRITICAL SPACES FOR COMPRESSIBLE VISCOUS AND HEAT-CONDUCTIVE GASES
- Global Unique Solvability of Inhomogeneous Navier-Stokes Equations with Bounded Density
- A Lagrangian Approach for the Incompressible Navier-Stokes Equations with Variable Density
- Fourier Analysis and Nonlinear Partial Differential Equations
- Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires
- Density-dependent incompressible viscous fluids in critical spaces
- The Incompressible Navier‐Stokes Equations in Vacuum
This page was built for publication: Global well-posedness for the \(2\)-D inhomogeneous incompressible Navier-Stokes system with large initial data in critical spaces