Integral characteristic function of a nonlinear Sturm-Liouville problem
From MaRDI portal
Publication:2670629
DOI10.1134/S0012266121120016zbMath1497.34044OpenAlexW4214870242WikidataQ115249082 ScholiaQ115249082MaRDI QIDQ2670629
Dmitry V. Valovik, G. V. Chalyshov
Publication date: 11 March 2022
Published in: Differential Equations (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1134/s0012266121120016
Sturm-Liouville theory (34B24) Asymptotic distribution of eigenvalues, asymptotic theory of eigenfunctions for ordinary differential operators (34L20) Eigenvalues, estimation of eigenvalues, upper and lower bounds of ordinary differential operators (34L15)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Basis properties of root functions of the Sturm-Liouville problem with a spectral parameter in the boundary conditions
- Basis properties of the system of eigenfunctions in the Sturm-Liouville problem with a spectral parameter in the boundary conditions
- Sturm--Liouville problems with boundary conditions rationally dependent on the eigenparameter. II
- On a boundary value problem with a spectral parameter in the boundary conditions
- A Sturm-Liouville problem with physical and spectral parameters in boundary conditions
- Eigenvalue theory for time scale symplectic systems depending nonlinearly on spectral parameter
- Dependence of eigenvalues of Sturm-Liouville problems with eigenparameter dependent boundary conditions
- Eigenvalue transmission problems describing the propagation of TE and TM waves in two-layered inhomogeneous anisotropic cylindrical and planar waveguides
- Basis property in \(L_{p}(0, 1)\) of the system of eigenfunctions corresponding to a problem with a spectral parameter in the boundary condition
- Asymptotics of eigenvalues for regular Sturm--Liouville problems with eigenvalue parameter in the boundary condition
- Boundary value problems for second order, ordinary differential equations involving a parameter
- Oscillation and spectral theory for linear Hamiltonian systems with nonlinear dependence on the spectral parameter
- TRANSFORMATIONS BETWEEN STURM–LIOUVILLE PROBLEMS WITH EIGENVALUE DEPENDENT AND INDEPENDENT BOUNDARY CONDITIONS
- Asymptotic estimates for the Sturm-Liouville spectrum
- Sturm–Liouville problems with eigenparameter dependent boundary conditions
- On the Eigenvalue Accumulation of Sturm-Liouville Problems Depending Nonlinearly on the Spectral Parameter
- On the integral characteristic function of the Sturm-Liouville problem
This page was built for publication: Integral characteristic function of a nonlinear Sturm-Liouville problem