Hodge theory of Kloosterman connections
DOI10.1215/00127094-2021-0036zbMath1498.14019arXiv1810.06454OpenAlexW2897398145MaRDI QIDQ2671476
Jeng-Daw Yu, Javier Fresán, Claude Sabbah
Publication date: 3 June 2022
Published in: Duke Mathematical Journal (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1810.06454
Fourier transform\(L\)-functionsD-modulesKloosterman sumsGalois representationsmixed Hodge modulesconnections with irregular singularitiespotential automorphyirregular Hodge filtration\( \mathcal{L} \)-adic sheavesexponential motives
Gauss and Kloosterman sums; generalizations (11L05) Galois representations (11F80) (L)-functions of varieties over global fields; Birch-Swinnerton-Dyer conjecture (11G40) de Rham cohomology and algebraic geometry (14F40) Transcendental methods, Hodge theory (algebro-geometric aspects) (14C30) Monodromy; relations with differential equations and (D)-modules (complex-analytic aspects) (32S40) Mixed Hodge theory of singular varieties (complex-analytic aspects) (32S35)
Related Items
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Cohomological Hall algebra, exponential Hodge structures and motivic Donaldson-Thomas invariants
- Feynman integrals, \(L\)-series and Kloosterman moments
- Variation of mixed Hodge structure. I
- Modules de Hodge polarisables. (Polarisable Hodge modules)
- \(D\)-modules, perverse sheaves, and representation theory. Translated from the Japanese by Kiyoshi Takeuchi
- Hypergeometric periods for a tame polynomial
- \(L\)-functions of symmetric products of the Kloosterman sheaf over \(Z\)
- On the calculation of some differential Galois groups
- Fourier transformat, constants of the functional equations and Weil conjecture
- La conjecture de Weil. II
- Differential equations with polynomial coefficients
- Weights of exponential sums, intersection cohomology, and Newton polyhedra
- Perversity and variation
- The sign of the functional equation of the \(L\)-function of an orthogonal motive
- Galois representations.
- Motivic orthogonal two-dimensional representations of \(\text{Gal}(\overline\mathbb{Q}/\mathbb{Q})\)
- The discriminant and the determinant of a hypersurface of even dimension
- On the Gysin isomorphism of rigid cohomology
- Kloosterman sums and Hecke polynomials in characteristics 2 and 3
- \(E_1\)-degeneration of the irregular Hodge filtration
- \(L\)-functions of symmetric powers of Kloosterman sums (unit root \(L\)-functions and \(p\)-adic estimates)
- On the mod \(p\) reduction of orthogonal representations
- Hodge theory of the middle convolution
- On the crystalline period map
- Potential automorphy and change of weight
- Irregular Hodge filtration on twisted de Rham cohomology
- The Picard-Lefschetz formula for \(p\)-adic cohomology
- The modularity of the Barth--Nieto quintic and its relatives
- Periods and Nori Motives
- Functional equations of $L$-functions for symmetric products of the Kloosterman sheaf
- Fourier-Laplace transform of a variation of polarized complex Hodge structure, II
- Les Constantes des Equations Fonctionnelles des Fonctions L
- Fourier transforms and $p$-adic ‘Weil II’
- An explicit stationary phase formula for the local formal Fourier-Laplace transform
- Symmetric powers of the p-adic Bessel equation.
- Gauss Sums, Kloosterman Sums, and Monodromy Groups. (AM-116)
- Exponential Sums and Differential Equations. (AM-124)
- On twisted de Rham cohomology
- Irregular Hodge theory
- Automorphy and irreducibility of some l-adic representations
- Galois representations attached to moments of Kloosterman sums and conjectures of Evans
- Hypergeometric $\mathbf {{}_3{\it F}_2(1/4)}$ evaluations over finite fields and Hecke eigenforms
- Monodromy at Infinity of Polynomial Maps and Newton Polyhedra (with an Appendix by C. Sabbah)
- ON THE IRREGULAR HODGE FILTRATION OF EXPONENTIALLY TWISTED MIXED HODGE MODULES
- L-functions for symmetric products of Kloosterman sums
- On Some Exponential Sums
- Mixed Hodge modules
- Seventh power moments of Kloosterman sums