Asymptotics for Hecke eigenvalues of automorphic forms on compact arithmetic quotients
From MaRDI portal
Publication:2671885
DOI10.1016/j.aim.2022.108372OpenAlexW3109461091MaRDI QIDQ2671885
Pablo Ramacher, Satoshi Wakatsuki
Publication date: 3 June 2022
Published in: Advances in Mathematics (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/2002.03263
Pseudodifferential and Fourier integral operators on manifolds (58J40) Automorphic forms, one variable (11F12)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- A Sato-Tate law for \(\mathrm{GL}(3)\)
- Quantum ergodicity and symmetry reduction
- Weyl's law for the cuspidal spectrum of \(\mathrm{SL}(n)\)
- Le théorème de Paley-Wiener invariant pour les groupes de Lie réductifs. (The invariant Paley-Wiener theorem for reductive Lie groups)
- Spectra of compact locally symmetric manifolds of negative curvature
- The spectrum of positive elliptic operators and periodic bicharacteristics
- The Plancherel formula for spherical functions with a one-dimensional \(K\)-type on a simply connected simple Lie group of Hermitian type
- The equivariant spectral function of an invariant elliptic operator. \(L^p\)-bounds, caustics, and concentration of eigenfunctions
- Automorphic Plancherel density theorem
- Subconvex bounds for Hecke-Maass forms on compact arithmetic quotients of semisimple Lie groups
- Spectral asymptotics for arithmetic quotients of \(\text{SL}(n,{\mathbb R})/\text{SO}(n)\)
- On the behaviour of eigenvalues of Hecke operators
- Global Jacquet-Langlands correspondence, multiplicity one and classification of automorphic representations. With an appendix by Neven Grbac.
- Conjugacy classes in Lie algebras and algebraic groups
- Zeta functions of simple algebras
- Compact Clifford-Klein forms of symmetric spaces
- Singular equivariant asymptotics and Weyl's law. On the distribution of eigenvalues of an invariant elliptic operator
- Sato-Tate theorem for families and low-lying zeros of automorphic \(L\)-functions. Appendix A by Robert Kottwitz, and Appendix B by Raf Cluckers, Julia Gordon and Immanuel Halupczok.
- Distribution of Hecke Eigenvalues for GL(n)
- Families of L-Functions and Their Symmetry
- Weyl’s law for Hecke operators on GL(n) over imaginary quadratic number fields
- The distribution of the eigenvalues of Hecke operators
- A Formula for Semisimple Lie Groups
- Discrete Series Characters and Fourier Inversion on Semisimple Real Lie Groups
- Fourier Inversion and the Plancherel Theorem for Semisimple Real Lie Groups
- Zeroes of zeta functions and symmetry
- Lower bounds for Maass forms on semisimple groups
- Spherical functions on a 𝔭-adic Chevalley group
- Low-Lying Zeros of Maass Form L-Functions
- Répartition asymptotique des valeurs propres de l’opérateur de Hecke 𝑇_𝑝
- Le théorème de Paley-Wiener invariant pour les groupes de Lie réductifs. II
- Modular Forms
- Linear algebraic groups.
This page was built for publication: Asymptotics for Hecke eigenvalues of automorphic forms on compact arithmetic quotients