Coronizations and big pieces in metric spaces
From MaRDI portal
Publication:2673859
DOI10.5802/aif.3518OpenAlexW3080615576MaRDI QIDQ2673859
Publication date: 21 September 2022
Published in: Annales de l'Institut Fourier (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/2008.11544
Harmonic analysis on homogeneous spaces (43A85) Length, area, volume, other geometric measure theory (28A75) Analysis on metric spaces (30L99)
Related Items
Corona decompositions for parabolic uniformly rectifiable sets ⋮ Carleson measure estimates for caloric functions and parabolic uniformly rectifiable sets ⋮ On big pieces approximations of parabolic hypersurfaces
Cites Work
- Parabolic singular integrals and uniformly rectifiable sets in the parabolic sense
- Harmonic measure and approximation of uniformly rectifiable sets
- Caloric measure in parabolic flat domains
- Rectifiable sets and the traveling salesman problem
- La solution des conjectures de Calderon
- L'intégrale de Cauchy définit un opératuer borne sur \(L^ 2 \)pour les courbes lipschitziennes
- Wavelets and singular integrals on curves and surfaces
- Parabolic singular integrals of Calderón-type, rough operators, and caloric layer potentials
- Hard Sard: quantitative implicit function and extension theorems for Lipschitz maps
- Singular integrals on regular curves in the Heisenberg group
- A parabolic version of corona decompositions
- \(L^ 2\) solvability and representation by caloric layer potentials in time-varying domains
- Uniform rectifiability and harmonic measure I: Uniform rectifiability implies Poisson kernels in $L^p$
- Systems of dyadic cubes in a doubling metric space
- On big pieces approximations of parabolic hypersurfaces
- Uniform rectifiability, Calderón-Zygmund operators with odd kernel, and quasiorthogonality
- The Cauchy Integral, Calderon Commutators, and Conjugations of Singular Integrals in R n
- Applications of the Cauchy integral on Lipschitz curves
- The method of layer potentials for the heat equation in time-varying domains
- A T(b) theorem with remarks on analytic capacity and the Cauchy integral
- Fourier Analysis and Hausdorff Dimension
- 𝐿^{𝑝}-square function estimates on spaces of homogeneous type and on uniformly rectifiable sets
- Quantitative decompositions of Lipschitz mappings into metric spaces
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: Coronizations and big pieces in metric spaces