Relative Oppermann-Thomas cluster tilting objects in \((n+2)\)-angulated categories
From MaRDI portal
Publication:2674397
DOI10.1007/S10485-022-09673-1zbMath1498.18018OpenAlexW4214700597MaRDI QIDQ2674397
Zongyang Xie, Liu, Zhongkui, Xiao Yan Yang
Publication date: 12 September 2022
Published in: Applied Categorical Structures (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s10485-022-09673-1
cluster tilting objects\(n\)-abelian categoriessupport \(\tau_n\)-tilting pairs\((n+2)\)-angulated categories\(n\)-rigid objects
Abelian categories, Grothendieck categories (18E10) Derived categories, triangulated categories (18G80)
Cites Work
- \(n\)-abelian and \(n\)-exact categories
- Maximal rigid subcategories in 2-Calabi-Yau triangulated categories.
- Cluster tilting for higher Auslander algebras.
- Higher-dimensional cluster combinatorics and representation theory
- Higher-dimensional Auslander-Reiten theory on maximal orthogonal subcategories.
- Auslander correspondence.
- \(n\)-abelian quotient categories
- \(d\)-abelian quotients of \((d+2)\)-angulated categories
- Tropical duality in \((d+2)\)-angulated categories
- Maximal \(\tau_d\)-rigid pairs
- Mutation in triangulated categories and rigid Cohen-Macaulay modules
- Tilting theory and cluster combinatorics.
- Noetherian hereditary abelian categories satisfying Serre duality
- Relative cluster tilting objects in triangulated categories
- n-angulated categories
- Relative n-rigid objects in (n + 2)-angulated categories
- -tilting theory
This page was built for publication: Relative Oppermann-Thomas cluster tilting objects in \((n+2)\)-angulated categories