On the distribution of polynomials having a given number of irreducible factors over finite fields
From MaRDI portal
Publication:2679123
DOI10.1007/s40993-022-00423-9OpenAlexW4313594997MaRDI QIDQ2679123
Publication date: 19 January 2023
Published in: Research in Number Theory (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/2206.12743
multiplicative functionsSelberg-Delange methodsaddle point approximationpolynomials over finite fieldfixed number of irreducible factors
Asymptotic results on arithmetic functions (11N37) Polynomials over finite fields (11T06) Arithmetic theory of polynomial rings over finite fields (11T55) Rate of growth of arithmetic functions (11N56)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Arithmetical semigroups. IV: Selberg's analysis
- The function field Sathe--Selberg formula in arithmetic progressions and `short intervals'
- A Poisson * Negative Binomial Convolution Law for Random Polynomials over Finite Fields
- Sur la distribution des nombres entiers ayant une quantité fixée de facteurs premiers
- Uniform estimates for almost primes over finite fields