Localization for affine \(\mathcal{W} \)-algebras
From MaRDI portal
Publication:2679893
DOI10.1016/j.aim.2022.108837OpenAlexW4287634660MaRDI QIDQ2679893
Publication date: 26 January 2023
Published in: Advances in Mathematics (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/2010.11434
Lie algebras and Lie superalgebras (17Bxx) Lie groups (22Exx) (Co)homology theory in algebraic geometry (14Fxx)
Cites Work
- Eisenstein series and quantum groups
- Singular blocks of parabolic category \(\mathcal O\) and finite \(W\)-algebras
- Affine Kac-Moody algebras and semi-infinite flag manifolds
- Perverse sheaves on affine flags and Langlands dual group
- Singular localization of \(\mathfrak{g}\)-modules and applications to representation theory
- Localization of \(\mathfrak g\)-modules on the affine Grassmannian
- La conjecture de Weil. II
- Characters and fusion rules for \(W\)-algebras via quantized Drinfeld- Sokolov reduction
- Kazhdan-Lusztig conjecture for symmetrizable Kac-Moody Lie algebras. III: Positive rational case.
- Loop group actions on categories and Whittaker invariants
- Introduction to \(W\)-algebras and their representation theory
- Kazhdan-Lusztig conjecture for affine Lie algebras with negative level
- \(\mathcal{W}\)-algebras and Whittaker categories
- Affine Beilinson-Bernstein localization at the critical level for \(\mathrm{GL}_2\)
- Localization of affine \(W\)-algebras
- Representation theory of \(\mathcal{W}\)-algebras
- Semi-infinite cohomology and the linkage principle for \(\mathcal{W}\)-algebras
- Preservation of depth in the local geometric Langlands correspondence
- Harish-Chandra bimodules for quantized Slodowy slices
- D-modules on the affine flag variety and representations of affine Kac-Moody algebras
- On the structure of the category O for W-algebras
- Fundamental local equivalences in quantum geometric Langlands
- ENDOSCOPY FOR HECKE CATEGORIES, CHARACTER SHEAVES AND REPRESENTATIONS
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item