Fine properties of Newtonian functions and the Sobolev capacity on metric measure spaces
DOI10.4171/RMI/884zbMath1355.46040arXiv1404.7056OpenAlexW3106363480WikidataQ110236434 ScholiaQ110236434MaRDI QIDQ268246
Publication date: 14 April 2016
Published in: Revista Matemática Iberoamericana (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1404.7056
quasi-continuitycontinuityPoincaré inequalitydoubling measurelocally Lipschitz functionmetric measure spaceBanach function latticeNewtonian spaceouter capacitySobolev capacitySobolev-type space
Spaces of measurable functions ((L^p)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.) (46E30) Contents, measures, outer measures, capacities (28A12) Sobolev spaces and other spaces of ``smooth functions, embedding theorems, trace theorems (46E35) Analysis on metric spaces (30L99)
Related Items (2)
This page was built for publication: Fine properties of Newtonian functions and the Sobolev capacity on metric measure spaces