The Lerch zeta function. III: Polylogarithms and special values
From MaRDI portal
Publication:268404
DOI10.1186/s40687-015-0049-2zbMath1412.11110arXiv1506.06161OpenAlexW840537718WikidataQ59479368 ScholiaQ59479368MaRDI QIDQ268404
Jeffrey C. Lagarias, Wen-Ch'ing Winnie Li
Publication date: 15 April 2016
Published in: Research in the Mathematical Sciences (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1506.06161
Related Items
The Lerch zeta function. IV: Hecke operators, Evaluation of integrals with hypergeometric and logarithmic functions, New properties of the Lerch's transcendent, An analog of the prime number theorem for finite fields via truncated polylogarithm expansions, Meromorphic continuation of Selberg zeta functions with twists having non-expanding cusp monodromy
Cites Work
- Classical and quantum dilogarithm identities
- The dilogarithm as a characteristic class for flat bundles
- Realizations of polylogarithms
- Note on the Lerch zeta function
- Resurgence of the Euler-Maclaurin summation formula
- Double integrals and infinite products for some classical constants via analytic continuations of Lerch's transcendent
- Resurgence of the fractional polylogarithms
- Dilogarithms, regulators and \(p\)-adic \(L\)-functions
- Higher regulators and values of \(L\)-functions
- The \(p\)-adic Hurwitz \(L\)-functions
- Classical motivic polylogarithm according to Beilinson and Deligne
- Shuffle algebra and polylogarithms
- Higher logarithms
- Geometry in Grassmannians and a generalization of the dilogarithm
- Tata lectures on theta. I: Introduction and motivation: Theta functions in one variable. Basic results on theta functions in several variables. With the assistance of C. Musili, M. Nori, E. Previato, and M. Stillman
- \(p\)-adic multiple zeta values. I: \(p\)-adic multiple polylogarithms and the \(p\)-adic KZ equation
- Extended Bloch group and the Cheeger-Chern-Simons class
- Geometry of configurations, polylogarithms, and motivic cohomology
- On the Hurwitz-Lerch zeta-function.
- The Lerch zeta function. IV: Hecke operators
- An efficient algorithm for accelerating the convergence of oscillatory series, useful for computing the polylogarithm and Hurwitz zeta functions
- On an extension of the universal monodromy representation for \(\mathbb{P}^1 \backslash \{ 0, 1,\infty \}\)
- On the Lerch zeta function
- DILOGARITHM IDENTITIES IN CONFORMAL FIELD THEORY
- Euler’s constant: Euler’s work and modern developments
- The Lerch zeta function I. Zeta integrals
- The Lerch zeta function II. Analytic continuation
- The Dilogarithm Function
- A regulator for curves via the Heisenberg group
- On the Monodromy of Higher Logarithms
- The Riemann Zeros and Eigenvalue Asymptotics
- QUANTUM DILOGARITHM
- Classical Polylogarithms
- On l-Adic Iterated Integrals, II Functional Equations and l-Adic Polylogarithms
- Fonctions zeta p-adiques des corps de nombres abeliens réels
- On i-Adic Iterated integrals, I analog of zagier conjecture
- On l-Adic Iterated Integrals, III Galois Actions on Fundamental Groups
- p -adic multiple zeta values II. Tannakian interpretations
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item