Davydov-Yetter cohomology, comonads and Ocneanu rigidity
From MaRDI portal
Publication:2685673
DOI10.1016/j.aim.2022.108853OpenAlexW2979746831MaRDI QIDQ2685673
Christoph Schweigert, Azat M. Gainutdinov, Jonas Haferkamp
Publication date: 22 February 2023
Published in: Advances in Mathematics (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1910.06094
Hopf algebrasdeformation theoryfinite tensor categoriescomonad cohomologiesDavydov-Yetter cohomologies
Monads (= standard construction, triple or triad), algebras for monads, homology and derived functors for monads (18C15) Hopf algebras and their applications (16T05)
Related Items (3)
Compact semisimple 2-categories ⋮ Davydov-Yetter cohomology and relative homological algebra ⋮ Rozansky-Witten geometry of Coulomb branches and logarithmic knot invariants
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Consistent systems of correlators in non-semisimple conformal field theory
- Symplectic fermions and a quasi-Hopf algebra structure on \(\overline{U}_{\operatorname{i}}s\ell(2)\)
- The non-semisimple Verlinde formula and pseudo-trace functions
- Abelian categories of modules over a (lax) monoidal functor
- Invariants of 3-manifolds and projective representations of mapping class groups via quantum groups at roots of unity
- Non-degeneracy conditions for braided finite tensor categories
- Hopf monads
- On fusion categories.
- Quantum double of Hopf monads and categorical centers
- Twisted automorphisms of group algebras
- On Unimodular Finite Tensor Categories
- Invariant Hopf 2-Cocycles for Affine Algebraic Groups
- Non-semisimple topological quantum field theories for 3-manifolds with corners
- Triangular Hopf algebras with the Chevalley property
- Ribbon structures of the Drinfeld center of a finite tensor category
This page was built for publication: Davydov-Yetter cohomology, comonads and Ocneanu rigidity