Sharp eigenvalue estimates for rank one perturbations of nonnegative operators in Krein spaces
DOI10.1016/j.jmaa.2016.03.012zbMath1341.47045OpenAlexW301117870MaRDI QIDQ268583
Leslie Leben, Jussi Behrndt, Carsten Trunk, Roland Möws, Francisco Martínez Pería
Publication date: 15 April 2016
Published in: Journal of Mathematical Analysis and Applications (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.jmaa.2016.03.012
Krein spaceselfadjoint operatoreigenvalue estimatesindefinite Sturm-Liouville operatorrank one perturbation
Sturm-Liouville theory (34B24) Perturbation theory of linear operators (47A55) Linear operators on spaces with an indefinite metric (47B50) Eigenvalues, estimation of eigenvalues, upper and lower bounds of ordinary differential operators (34L15)
Related Items (5)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Perturbation theory of selfadjoint matrices and sign characteristics under generic structured rank one perturbations
- Scattering and inverse scattering for a left-definite Sturm-Liouville problem
- On finite rank perturbations of selfadjoint operators in Krein spaces and eigenvalues in spectral gaps
- Eigenvalue perturbation theory of classes of structured matrices under generic structured rank one perturbations
- A Krein space approach to symmetric ordinary differential operators with an indefinite weigth function
- A factorization of regular generalized Nevanlinna functions
- High order singular rank one perturbations of a positive operator
- Sturm--Liouville operators with indefinite weight functions and eigenvalue depending boundary conditions
- On the negative squares of indefinite Sturm--Liouville operators
- On symmetries in the theory of finite rank singular perturbations
- Matrices and indefinite scalar products
- Changing the spectrum of an operator by perturbation
- On generalized resolvents and \(Q\)-functions of symmetric linear relations (subspaces) in Hilbert space
- Rank one perturbations, approximations, and selfadjoint extensions
- Singular perturbations of self-adjoint operators
- Rank one perturbations at infinite coupling in Pontryagin spaces.
- Rank one perturbations in a Pontryagin space with one negative square
- Floquet theory for left-definite Sturm-Liouville problems
- Inverse spectral problems for left-definite Sturm-Liouville equations with indefinite weight
- Left definite Sturm-Liouville problems with eigenparameter dependent boundary conditions
- Singular left-definite Sturm--Liouville problems
- Rank one perturbations at infinite coupling
- A factorization result for generalized Nevanlinna functions of the class \(N_k\)
- Eigenvalue estimates for singular left-definite Sturm-Liouville operators
- The effect of finite rank perturbations on Jordan chains of linear operators
- The similarity problem for \(J\)-nonnegative Sturm-Liouville operators
- On finite rank perturbations of definitizable operators
- Boundary value problems with local generalized Nevanlinna functions in the boundary condition
- Spectral points of type \(\pi_{+}\) and \(\pi_{-}\) of self-adjoint operators in Krein spaces
- Jordan forms of real and complex matrices under rank one perturbations
- Scattering matrices and Weyl functions
- One-dimensional Perturbations, Asymptotic Expansions, and Spectral Gaps
- Some Questions in the Perturbation Theory ofJ-Nonnegative Operators in Krein Spaces
- Über einige Fortsetzungsprobleme, die eng mit der Theorie hermitescher Operatoren im RaumeIIx zusammenhängen. I. Einige Funktionenklassen und ihre Darstellungen
- Eigenvalues and Pole Functions of Hamiltonian Systems with Eigenvalue Depending Boundary Conditions
- Indefinite Sturm–Liouville problems
- A characterization of generalized poles of generalized Nevanlinna functions
- Interpolation zwischen den Klassen 𝔖p von Operatoren in Hilberträumen
This page was built for publication: Sharp eigenvalue estimates for rank one perturbations of nonnegative operators in Krein spaces