Maximality of Laplacian algebras, with applications to invariant theory
From MaRDI portal
Publication:2687968
DOI10.1007/s10231-022-01269-9OpenAlexW4295836959MaRDI QIDQ2687968
Marco Radeschi, Ricardo A. E. Mendes
Publication date: 7 March 2023
Published in: Annali di Matematica Pura ed Applicata. Serie Quarta (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s10231-022-01269-9
Actions of groups on commutative rings; invariant theory (13A50) Foliations (differential geometric aspects) (53C12)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Computational invariant theory. With two appendices by Vladimir L. Popov and an addendum by Nobert A. Campo and Vladimir L. Popov
- Isoparametrische Hyperflächen in Sphären. I
- Laplacian algebras, manifold submetries and the inverse invariant theory problem
- Isoparametrische Hyperflächen in Sphären. II: Über die Zerlegung der Sphäre in Ballbündel
- Cliffordalgebren und neue isoparametrische Hyperflächen
- Non-Abelian harmonic analysis. Applications of \(SL(2,{\mathbb{R}})\)
- On some types of isoparametric hypersurfaces in spheres. I
- On some types of isoparametric hypersurfaces in spheres. II
- Laplace operator and polynomial invariants
- Classical invariant theory for finite reflection groups
- Matroids and quotients of spheres
- Algebraic nature of singular Riemannian foliations in spheres
- The structure of submetries
- Singular Riemannian foliations and their quadratic basic polynomials
- Clifford algebras and new singular Riemannian foliations in spheres
- When polarizations generate
- Tensor subalgebras and first fundamental theorems in invariant theory
- On homogeneous composed Clifford foliations
- Invariant Differential Operators on a Reductive Lie Algebra and Weyl Group Representations
- Polarization of Separating Invariants
This page was built for publication: Maximality of Laplacian algebras, with applications to invariant theory