Darboux transformations for the \(\hat{A}_{2n}^{(2)}\)-KdV hierarchy
DOI10.1007/S12220-022-01158-WOpenAlexW4319004820MaRDI QIDQ2688199
Publication date: 2 March 2023
Published in: The Journal of Geometric Analysis (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s12220-022-01158-w
Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.) (37K10) KdV equations (Korteweg-de Vries equations) (35Q53) Soliton theory, asymptotic behavior of solutions of infinite-dimensional Hamiltonian systems (37K40) Lie-Bäcklund and other transformations for infinite-dimensional Hamiltonian and Lagrangian systems (37K35)
Related Items (1)
Cites Work
- Unnamed Item
- The \(n \times n\) KdV hierarchy
- On the Bäcklund transformation for the Gel'fand-Dickey equations
- On a trace functional for formal pseudo-differential operators and the symplectic structure of the Korteweg-deVries type equations
- Nonlinear superposition formula for the Kaup-Kuperschmidt partial differential equation
- On soliton solutions of the Kaup-Kupershmidt equation. II: `Anomalous' \(N\)-soliton solutions
- Isotropic curve flows
- Bäcklund transformations and loop group actions
- Bäcklund transformations for Gelfand–Dickey Flows, revisited
- Bäcklund transformation of partial differential equations from the Painlevé–Gambier classification. I. Kaup–Kupershmidt equation
This page was built for publication: Darboux transformations for the \(\hat{A}_{2n}^{(2)}\)-KdV hierarchy