Geometric invariance of the semi-classical calculus on nilpotent graded Lie groups
From MaRDI portal
Publication:2688218
DOI10.1007/s12220-022-01163-zOpenAlexW4318973275MaRDI QIDQ2688218
Steven Flynn, Clotilde Fermanian-Kammerer, Veronique Fischer
Publication date: 2 March 2023
Published in: The Journal of Geometric Analysis (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/2112.11509
abstract harmonic analysisanalysis on nilpotent Lie groupssemi-classical analysis on nilpotent Lie groups and on filtered manifolds
Pseudodifferential and Fourier integral operators on manifolds (58J40) Analysis on other specific Lie groups (43A80) Pseudodifferential operators (47G30)
Related Items (1)
Cites Work
- Unnamed Item
- Quantization on nilpotent Lie groups
- The Atiyah-Singer index formula for subelliptic operators on contact manifolds. I.
- Carnot-Carathéodory metrics and quasiisometries of symmetric spaces of rank 1
- Quantum evolution and sub-Laplacian operators on groups of Heisenberg type
- Observability and controllability for the Schrödinger equation on quotients of groups of Heisenberg type
- A groupoid approach to pseudodifferential calculi
- Semi-classical analysis on H-type groups
- Phase-space analysis and pseudodifferential calculus on the Heisenberg group
- CONTACT AND PANSU DIFFERENTIABLE MAPS ON CARNOT GROUPS
- On the tangent groupoid of a filtered manifold
- Hardy Spaces on Homogeneous Groups. (MN-28), Volume 28
- Defect measures on graded Lie groups
This page was built for publication: Geometric invariance of the semi-classical calculus on nilpotent graded Lie groups