Milnor \(K\)-theory of \(p\)-adic rings
From MaRDI portal
Publication:2689038
DOI10.1515/crelle-2022-0079OpenAlexW3119549878MaRDI QIDQ2689038
Publication date: 6 March 2023
Published in: Journal für die Reine und Angewandte Mathematik (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/2101.01092
Related Items (1)
Cites Work
- A restriction isomorphism for cycles of relative dimension zero
- \(K_2\) of localisations of local rings
- Milnor \(K\)-theory of complete discrete valuation rings with finite residue fields
- Motivic cohomology over Dedekind rings
- Application d'Abel-Jacobi p-adique et cycles algébriques. (p-adic Abel- Jacobi map and algebraic cycles)
- The Gersten conjecture for Milnor \(K\)-theory
- \(K_ 2\) of non-commutative local rings
- \(p\)-adic étale cohomology
- Abelian extensions of an absolutely unramified local field with general residue field
- Milnor \(K\)-theory is the simplest part of algebraic \(K\)-theory
- \(K_2\) of discrete valuation rings
- Relations between \(K_2\) and Galois cohomology
- Affine analog of the proper base change theorem
- Gersten's conjecture for some complexes of vanishing cycles
- Almost ring theory
- Algebraic \(K\)-theory and descent for blow-ups
- Pro unitality and pro excision in algebraic \(K\)-theory and cyclic homology
- The relative form of Gersten's conjecture over a discrete valuation ring: The smooth case
- The \(K\)-theory of fields in characteristic \(p\)
- On the Milnor \(K\)-groups of complete discrete valuation fields
- Algebraization for zero-cycles and the \(p\)-adic cycle class map
- Topological Hochschild homology and integral \(p\)-adic Hodge theory
- Milnor 𝐾-theory of local rings with finite residue fields
- Complexe de de\thinspace Rham-Witt et cohomologie cristalline
- Base Change Transitivity and Künneth Formulas for the Quillen Decomposition of Hochschild Homology.
- Higher algebraic K-theory: I
- Solutions d'équations à coefficients dans un anneau hensélien
- A presentation for some 𝐾₂(𝑛,𝑅)
- The $K_2$ of rings with many units
- K-theory of valuation rings
- 𝐾-theory and topological cyclic homology of henselian pairs
- K-theory and logarithmic Hodge-Witt sheaves of formal schemes in characteristic p
- DEFORMATION THEORY OF THE CHOW GROUP OF ZERO CYCLES
- Modules over algebraic cobordism
- p-adic étale Tate twists and arithmetic duality☆
- Introduction to Algebraic K-Theory. (AM-72)
- Syntomic complexes and p-adic étale Tate twists
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: Milnor \(K\)-theory of \(p\)-adic rings