A vanishing theorem on a class of Hartogs domain
From MaRDI portal
Publication:2690106
DOI10.1007/s10114-022-0176-9OpenAlexW4296186935WikidataQ115236325 ScholiaQ115236325MaRDI QIDQ2690106
Lishuang Pan, An Wang, Chengchen Zhong
Publication date: 15 March 2023
Published in: Acta Mathematica Sinica. English Series (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s10114-022-0176-9
Invariant metrics and pseudodistances in several complex variables (32F45) Integral representations; canonical kernels (Szeg?, Bergman, etc.) (32A25) Vanishing theorems (32L20) Special domains (Reinhardt, Hartogs, circular, tube, etc.) in (mathbb{C}^n) and complex manifolds (32Q02)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- On the extension of \(L^ 2\) holomorphic functions
- On complex analytic vector bundles
- \(L^ 2\)-cohomology and index theorem for the Bergman metric
- A vanishing theorem on Kähler Finsler manifolds
- Zeros of Bergman kernels on some Hartogs domains
- Geometry of domains with the uniform squeezing property
- A vanishing theorem for semipositive line bundles over non-Kähler manifolds
- A reduction theorem for cohomology groups of very strongly q-convex Kähler manifolds
- A generalization of Kodaira-Ramanujam's vanishing theorem
- On manifolds that cannot be ample divisors
- \(L_ 2\) cohomology of pseudoconvex domains with complete Kähler metric
- \(L_ 2\) cohomology of the Bergman metric for weakly pseudoconvex domains
- The Bergman kernels on super-Cartan domains of the first type
- On vanishing theorems for Higgs bundles
- Canonical metrics on the moduli space of Riemann surfaces. I
- Kähler hyperbolicity and \(L_ 2\)-Hodge theory
- Properties of squeezing functions and global transformations of bounded domains
- Vanishing theorems.
- Estimations $\mathrm{L}^2$ pour l'opérateur $\bar \partial$ d'un fibré vectoriel holomorphe semi-positif au-dessus d'une variété kählérienne complète
- Lectures on Curves on an Algebraic Surface. (AM-59)
- On a Differential-Geometric Method in the Theory of Analytic Stacks
- Note on Kodaira-Spencer's proof of Lefschetz theorems
This page was built for publication: A vanishing theorem on a class of Hartogs domain